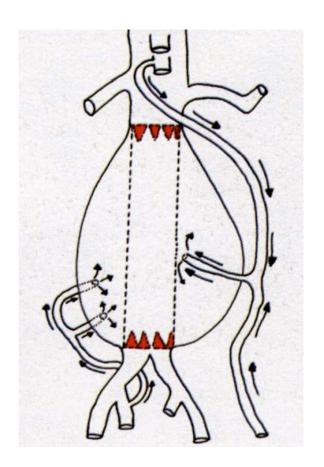


Endoleak Type II prevention rather than endoleak treatment is the way to go

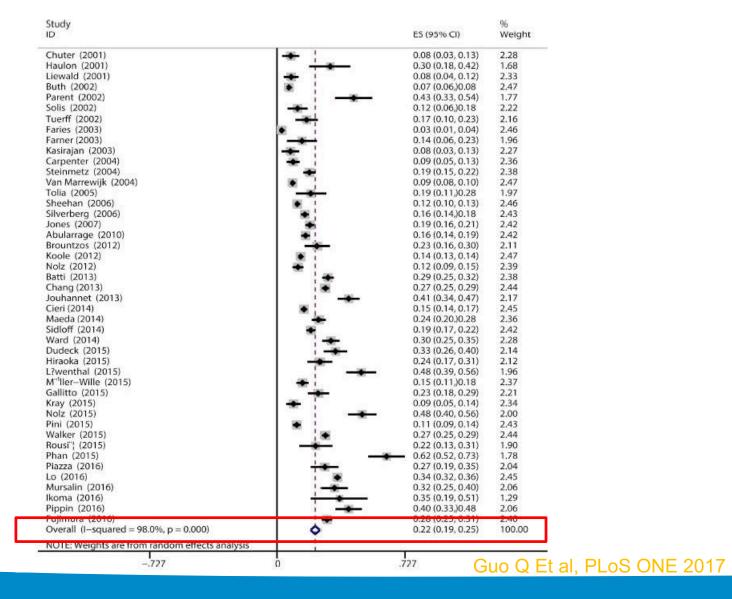
Daniela Branzan, MD Head of Vascular Surgical Department University Hospital Leipzig

Disclosures

- I have the following potential conflicts of interest to report:
 - Consulting and speaking fees from:
 - Bentley Innomed GmbH
 - BD
 - Cook Medical
 - Cydar Medical
 - Endologix


Endoleak Typ II

- IIa: Simple or to-and-fro
 - from only 1 branch
- ♥ IIb: Complex or flow-through
 - 2 or more patent branches

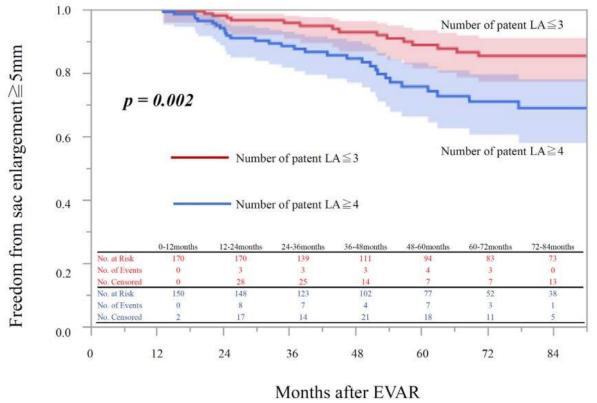


Incidence of Endoleak Typ II

Risk Factors for Endoleak Typ II

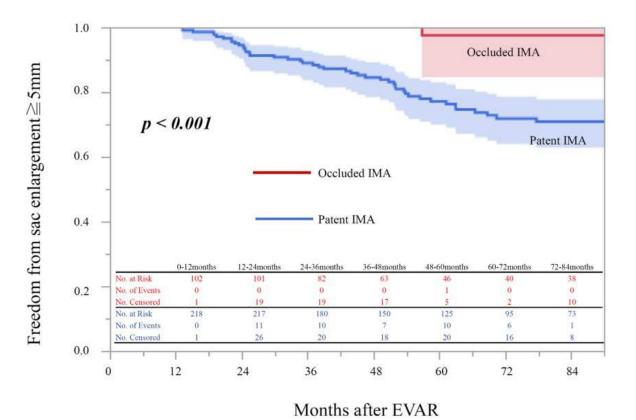
Table 3. Pooled ORs for association of commonly studied risk factors with Type II endoleak.

Potential risk factors	No. of studies	Total no. of participants	Pooled OR	95% CI	P value	l ²
Age	8	6278	0.37	0.31-0.43	<0.001	99.0
Male	12	11775	0.83	0.67-1.02	0.059	46.4
Smoking	14	20477	0.71	0.55-0.92	<0.001	86.4
Diabetes	10	7303	0.91	0.76-1.09	0.251	20.9
Hypertension	10	7281	0.98	0.85-1.12	0.484	0
Hyperlipidemia	7	5522	1.12	0.83-1.49	0.814	74.7
Chronic renal insufficiency	10	9201	0.85	0.53-1.36	0.600	85.3
COPD	10	5745	0.84	0.69-1.03	0.135	34.1
Polytrafluoroethylene-based endografts	7	8396	0.88	0.65-1.18	0.390	70.8
Anticoagulants	5	3758	1.27	0.97-1.67	0.537	0
Antiplatelet	5	3758	1.09	0.79-1.51	0.220	65.6
Patent IMA	3	4353	1.98	1.06–3.71	0.012	77.6
Number of patent lumbar arteries	2	758	3.07	2.81-3.33	<0.001	99.8
Maximum aneurysm diameter	7	4858	0.23	0.17-0.30	<0.001	98.0


Guo Q et al, PLOS ONE 2017

Risk Factors for Endoleak Typ II - Patent LAs -

The freedom from aneurysm sac enlargement (≥5 mm) at 5 years was 76% in patients with ≥4 LAs and 89% in patients with ≤3 LAs



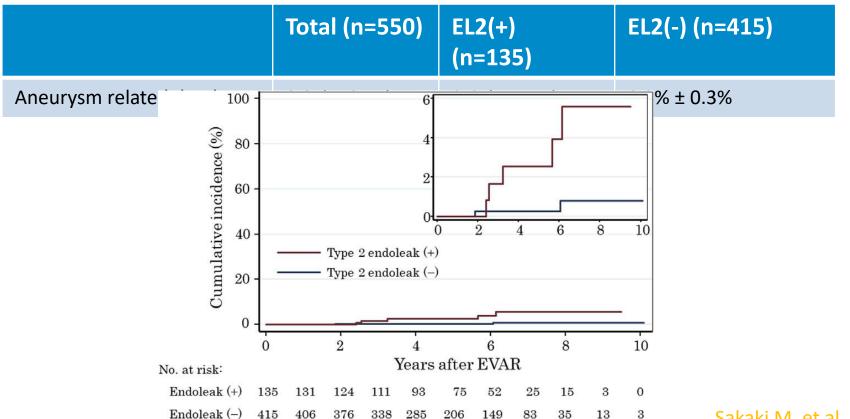
Risk Factors for Endoleak Typ II - Patent IMA -

The freedom from aneurysm sac enlargement at 5 years was 77% in patients with open IMA and 98% in patients with occluded IMA

Natural History of Endoleak Typ II

The cumulative incidence of aneurysm sac enlargement (≥5 mm)

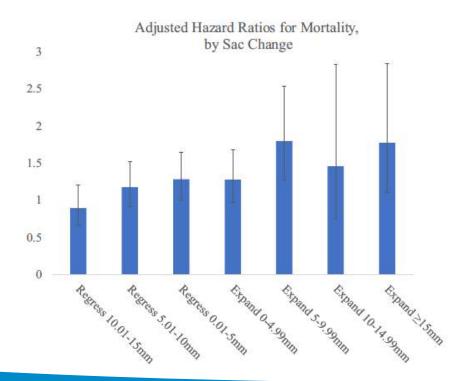
Sakaki M, et al. Ann Vasc Surg. 2020

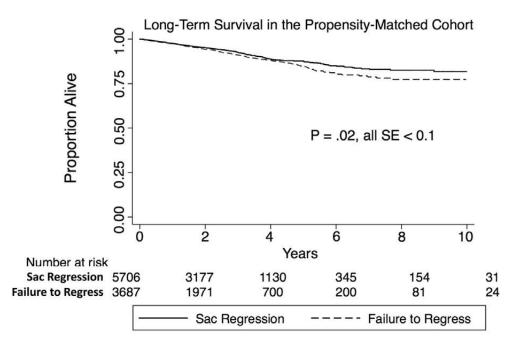

Typ 2 EL -significant predictor of sac enlargement (p = 0.002)!

Natural History of Endoleak Typ II

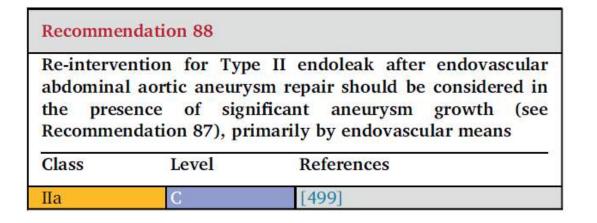
The probability of freedom from aneurysm-related death after EVAR

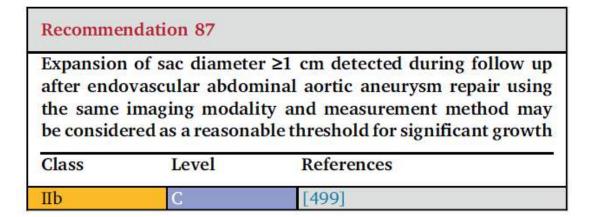
Sakaki M, et al. Ann Vasc Surg. 2020


Typ 2 EL - significant predictor for aneurysm-related death after EVAR!


Natural History of Endoleak Typ II

Not only sac enlargement, but also the lack of sac regression is associated with lower long-term survival, independent of reinterventions




Endoleak Typ II - Treatment

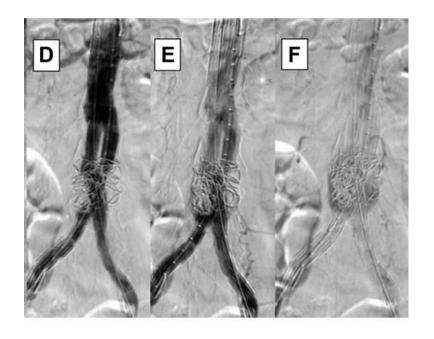
Only indicated in case of sac enlargement.

- Several treatments are available:
 - Embolization
 - conversion to open repair
 - laparoscopic clipping

-> Recurrence of T2EL after 3 years: 50.0%

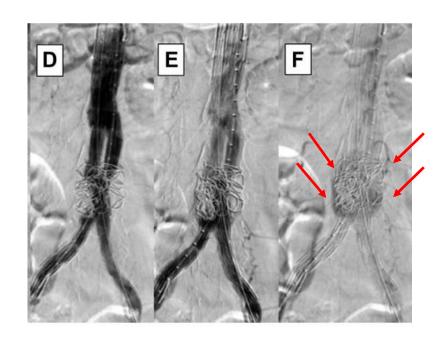
Uthofff, Katzen, et al. J Vasc Surg 2012

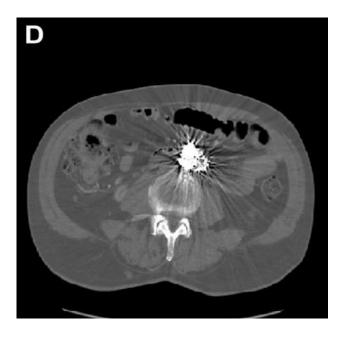
Patients need to be continuously monitored after EVAR to detect aneurysm growth and endoleaks, which increases the overall cost of AAA treatment


Prevention of Typ-2-Endoleaks

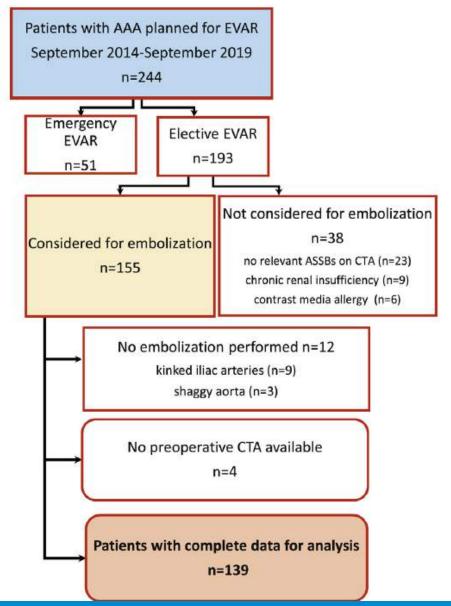
several *preventive methods* have been introduced to reduce the occurrence of this complication:

Sac-Embolization




Sac embolization - Disadvantages

No immediate T2EL exclusion


The artefacts produced by the coils on subsequent CT scans, potentially limiting the detection of endoleaks, especially smaller ones

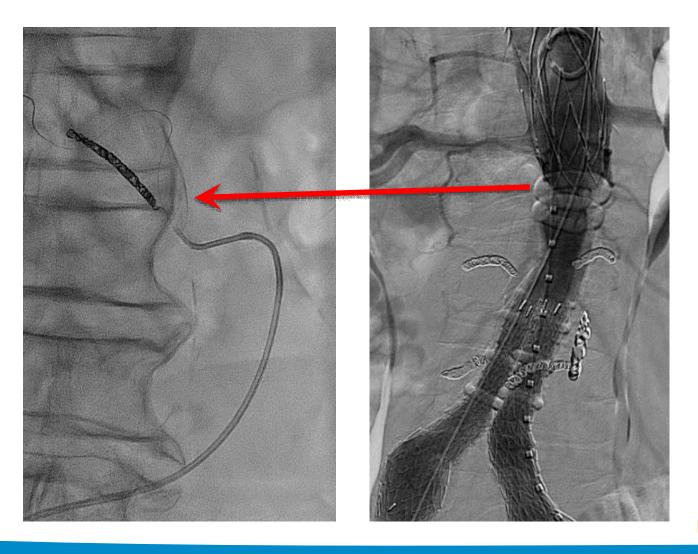
Embolization		No embolization			Odds Ratio	Odds Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% C	I IV. Random, 95% CI	
Aoki A 2017	1	24	33	56	5.2%	0.03 [0.00, 0.24]	• • • • • • • • • • • • • • • • • • • 	
Axelrod DJ 2004	5	30	30	72	12.6%	0.28 [0.10, 0.81]	-	
Burbelko 2013	0	33	9	38	3.0%	0.05 [0.00, 0.83]		
Chikazawa G 2013	5	21	35	150	12.5%	1.03 [0.35, 3.00]		
Hiraoka A 2017	9	58	60	226	16.7%	0.51 [0.24, 1.10]		
Müller-Wille R 2014	6	31	14	43	12.2%	0.50 [0.17, 1.49]	-	
Nevala T 2010	10	40	23	39	14.0%	0.23 [0.09, 0.60]		
Parry DJ 2002	0	14	8	22	2.9%	0.06 [0.00, 1.12]	• • • • • • • • • • • • • • • • • • • 	
Ward TJ 2013	37	108	78	158	21.0%	0.53 [0.32, 0.89]	-	
Total (95% CI)		359		804	100.0%	0.35 [0.21, 0.60]	•	
Total events	73		290				POSES.	
Heterogeneity: Tau ² =	0.28; Chi ²	= 16.03,	df = 8 (P = 0)	0.04); 12 =	= 50%			
Test for overall effect	Z = 3.88 (F	9 = 0.000	01)	-100-04 0 00			0.01 0.1 1 10 100 Embolization No embolization	

- In most of these studies, vessels were not routinely occluded as only larger diameter vessels were embolized
- It is unclear whether, to prevent T2EL, the interruption of direct blood flow to the aneurysm sac by occluding all ASSB should be performed according to the same principle as open aneurysm repair

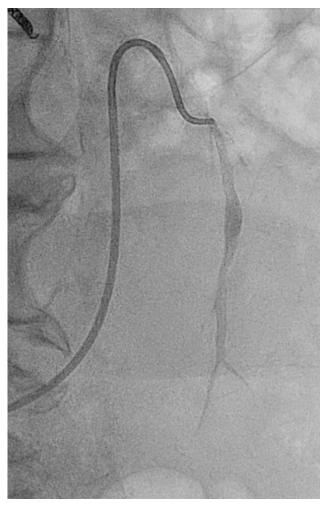
- Patients to be excluded from pre-EVAR coil-embolization:
 - Urgent repair required
 - Renal insufficiency
 - LA to be covered with the stent graft (LA2)

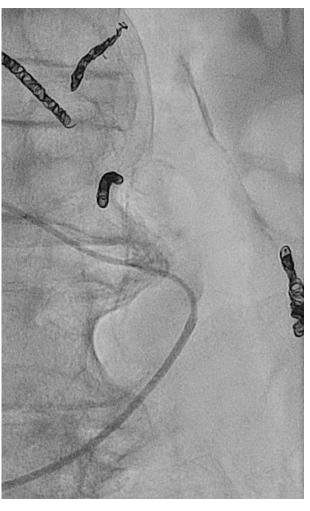
Table I. Baseline demographics and aneurysm characteristics (N = 139)

Variable	No. (%) or mean \pm SD
Total	139 (100)
Male sex	122 (87.8)
Age, years	74.8 ± 7.9
Hypertension	132 (95)
Diabetes mellitus	46 (33.1)
Coronary heart disease	56 (40.3)
Smoking	94 (67.6)
COPD	26 (18.7)
Peripheral artery disease	41 (29.5)
Hyperlipoproteinemia	88 (63.3)
Renal insufficiency	
GFR <60 mL/min/1.73 m ²	33 (23.7)
GFR, mL/min/1.73 m ²	71.2 ± 17.7
Body mass index, kg/m ²	27.9 ± 4.1
Aneurysm diameter, mm	56.6 ± 8.6
Type of infrarenal pathology	
AAA	111 (79.9)
PAU	23 (16.5)
Dissection	2 (1.4)
CIA aneurysm	3 (2.2)
Previous abdominal surgery	27 (19.4)



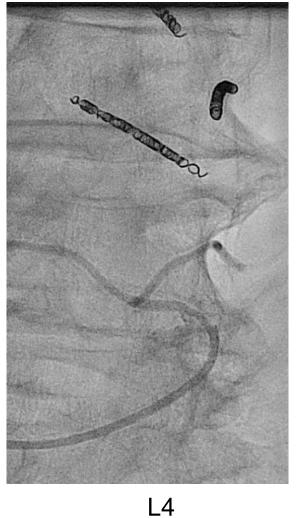
Patent ASSBs identified by CTA	
Total	626
LA	481
0	5 (3.6)
1	8 (5.8)
2	22 (15.8)
3	24 (17.3)
4	55 (39.6)
5	13 (9.4)
6	12 (8.6)
IMA	108 (77.7)
Other	37 (36.6)
Midsacral artery	23 (16.5)
Accessory renal artery	14 (10.1)

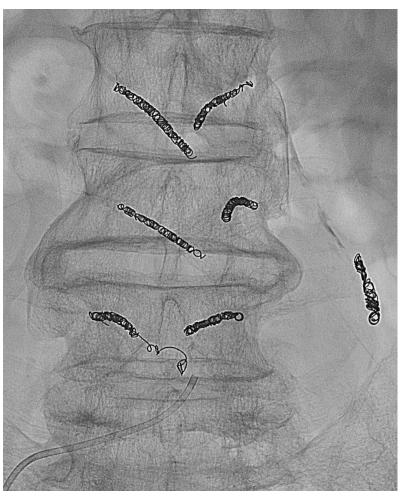


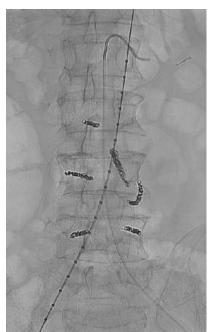


L3: 6Fr.-IMA + SIM I 5Fr.

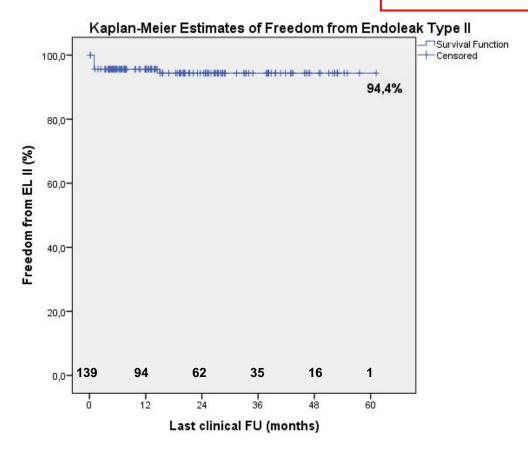
Branzan D, et al. J Vasc Surg. 2021

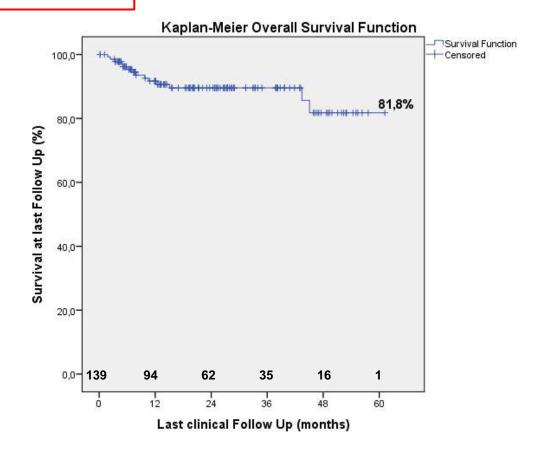




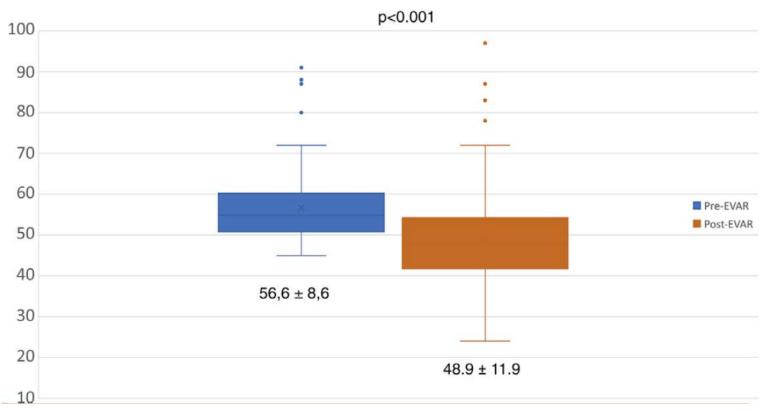

Final result

	Patent	Coiled		Open before EVAR			
		n	%	n	_%_		
LA	481	370	77	111	23		
IMA	108	86	80	22	20		
Median	5 (1-8)	3 (1-8)		1 (0	1 (0-5)		





mean follow-up: 1.9 ± 1.3 years



7 (5%) patients presented with isolated T2EL

Aneurysm Sac Diameter (mm)

mean follow-up 1.9 \pm 1.3 years

Branzan D, et al. J Vasc Surg. 2021

AAA shrinkage compared to literature

		ENGAGE Registry	Leipziger Cohort
Γ	Follow-up (Y)	2	1.9 ± 1.3
	N	939	139
	AAA Decreased	38.1% Dijkstra et al. J Vasc Surg 2019	86.7% Branzan D, et al. J Vasc Surg. 2021
	AAA Stable	48.7%	6.7%
	AAA Increased	2.6%	6.7%

Conclusions

- Preventive embolization of ASSBs in patients with AAA is safe and effective in preventing T2EL after EVAR.
- Shrinkage of the aneurysm sac was observed in a high proportion of patients.
- U Definitive evidence for routine embolization of ASSBs to prevent T2EL after EVAR and promote shrinkage of the AAA sac requires a randomized controlled trial.

Thank You!

Daniela.Branzan@medizin.uni-leipzig.de