Bioresorbable scaffolds for BTKreconstructions: Is there a future?

Sahil A. Parikh, MD, FACC, FSCAI

Associate Professor of Medicine Columbia University Vagelos College of Physicians & Surgeons

Director, Endovascular Services Center for Interventional Vascular Therapy NewYork Presbyterian/Columbia University Irving Medical Center

Disclosure Statement of Financial Interest

Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below.

Affiliation/Financial Relationship

• Institutional Research Support

• Advisory Board

• Consulting

Company

- Shockwave Medical, TriReme Medical, Surmodics, Abbott (Global PI), Boston Scientific (DSMB), Veryan Medical, Acotec
- Abbott, Janssen, Medtronic, Boston Scientific, CSI, Philips
- Terumo, Abiomed, Penumbra, Inari, Canon

Short Segment Occlusion PTA: Satisfactory Angiographic Result?

OCT of TP Trunk Post PTA

CLI & BTK Interventions

- Below-the-knee interventions are generally reserved for patients with CLI¹
- Meta-analysis of endovascular treatment for infrapopliteal artery disease:²
 - "Infrapopliteal DES were associated with significantly lower rates of restenosis, TLR, and amputations and improved wound healing compared to BA and BMS. DES also significantly reduced amputations compared with paclitaxel-coated balloons."

Hierarchical matrices of pairwise comparisons for all competing treatments as generated by a Bayesian binomial random effects model with informative heterogeneity and vague treatment priors. Numbers represent odds ratios and 95% credible intervals. Significant pairwise differences have been highlighted.

BA, balloon angioplasty; BMS, bare metal stent; DES, drug-eluting stent; PCB, paclitaxel-coated balloon.

COLUMBIA **¬NewYork-Presbyterian**

50

1. Jaff MR, et al. Ann Vasc Dis. 2015;8(4):343-57. 2. Katsanos K, et al. J Endovasc Ther. 2016;23:851-863.

BTK Interventions (DES & DCB) Lesion Length

Orange lines in graphs are inclusion criteria length max (DES) or min (DCB).

• Target lesion length limited by treatment modality in previous studies

ACHILLES- Scheinert D, et al. J Am Coll Cardiol. 2012;60(22):2290-5. ACHILLES wound- Katsanos K, et al. JACC Cardiovasc Interv. 2016;9(3):259-67. BIOLUX PII- Zeller T, et al. JACC Cardiovasc Interv. 2015;8(12):1614-22. DEBATE-BTK- Liistro F, et al. Circulation. 2013;128:615-621. DEBELLUM- Fanelli F, et al. J Cardiovasc Surg (Torino). 2014;55(2):207-16. DESTINY 2- Bosiers M, et al. J Cardiovasc Surg (Torino). 2017;58(1):49-54. DESTINY- Bosiers M, et al. J Vasc Surg. 2012;55(2):390-8. Etna Registry- Giaquinta A, et al. Vasc Endovascular Surg. 2017;51(2):60-66.

<u>a</u>

ACHILLES- Scheinert D, et al. J Am Coll Cardiol. 2012;60(22):2290-5. ACHILLES wound- Katsanos K, et al. JACC Cardiovasc Interv. 2016;9(3):259-67. BIOLUX PII- Zeller T, et al. JACC Cardiovasc Interv. 2015;8(12):1614-22. DEBATE-BTK- Liistro F, et al. Circulation. 2013;128:615-621. DEBELLUM- Fanelli F, et al. J Cardiovasc Surg (Torino). 2014;55(2):207-16. DESTINY 2- Bosiers M, et al. J Cardiovasc Surg (Torino). 2017;58(1):49-54. DESTINY- Bosiers M, et al. J Vasc Surg. 2012;55(2):390-8. Etna Registry- Giaquinta A, et al. Vasc Endovascular Surg. 2017;51(2):60-66.

Current endovascular treatment options for BTK

Current treatment options for tibial circulation*

BMS • Restenosis • No on-label BMS (US)	Angioplasty Elastic recoil Restenosis 		Drug (inhibit NIH)	(minimize recoil)	Leave nothing behind
 No off-tablet BMS (US) Permanent implant Short lengths Surgical reintervention Kestenosis Dissection Primary patency 20%–50% (TASC II) 		Angioplasty	×	×	\checkmark
		Atherectomy	×	×	\checkmark
DES • No on-label DES (US) • Permanent implant • Short lengths • Surgical reintervention • Device	DCBs • Elastic recoil • Residual plaque	BMS	×	\checkmark	×
	 Dissection Failed RCTs No approved DCB 	DES	\checkmark	\checkmark	×
	(US) herectomy	DCB	\checkmark	×	\checkmark
• E • L	Embolization ack of data	Ideal Treatment	\checkmark	\checkmark	\checkmark

*Adapted from Varcoe R. Long term results and a glimpse into the future with bioresorbable scaffolds for BTK? Presented at The Leipzig Interventional Course (LINC). January 28–31, 2020.

To effectively treat

BTK disease*

Scoffold

COLUMBIA

- NewYork-Presbyterian

BMS = bare metal stent; DCB = drug-coated balloon; DES = drug-eluting stent; NIH = neointimal hyperplasia; RCT = randomized controlled trial; TASC = Trans-Atlantic Inter-Society Consensus Document on Management of Peripheral Arterial Disease.

Treatment hypothesis is driving a new therapy: drug-eluting resorbable scaffolds (DRS)

To effectively treat BTK disease

- NewYork-Presbyterian

1st Gen Absorb Bioresorbable Vascular Scaffold

SCAFFOLD

- PLLA Scaffold
- Semi-crystalline
- Provides device structure
- Processed for required radial strength
- Fully resorbs*

DRUG

- Everolimus
- Cytostatic drug

DRUG COATING EXCIPIENT

- poly(D,L-lactide) (PDLLA)
- Thin layer
- Amorphous (non-crystalline)
- Conformal coating, 2-4 μm thick
- Controls drug release
- Fully resorbs

COLUMBIA

12 months

24 months

36 months

Degrading polymer is replaced by an increasingly cellular provisional matrix.

Representative photomicrographs of porcine coronary arteries implanted with Absorb BVS. Top: Movat's pentachrome, Bottom: Hematoxylin and eosin, 20x objective Images on file with Abbott Vascular.

* Platinum markers as proximal and distal ends remain for angiographic visualization

⊣NewYork-Presbyterian

CLI/BTK EVIDENCE DRS ABSORB BTK Complete imaging and clinical FU assessment over 5 years

STUDY DESIGN

Prospective, non-randomized, single-center study Inclusion criteria:

- Chronic lower limb ischemia: RC 3-6
- Life expectancy >1 yr.
- Single or multiple de novo lesions; >60%
- Infrapopliteal arteries (distal P3)
- Total lesion length ≤5cm (Max 2xBVS)
- Diameters 2.5–4.0 mm

STUDY ENDPOINTS

Varcoe et al. 2019.

Absorb in BTK | 5 Year Results

Dr. Ramon Varcoe (single ce

PATIENT CHARACTERISTICS

Number of patients

Gender (male : female)

Rutherford Score 3

Rutherford Score 4

Rutherford Score 5

Rutherford Score 6

Mean Age

Diabetes

CS	LESION CHARACTERISTICS		
18 56% : 44%	Limbs Treated		55
	Scaffolds Implanted		71
82 yrs	Location of implanted stents:	2	
	 Popliteal (distal third) 	29	2 (2.8%)
27%	 Anterior tibial artery 		15 (21.1%)
2%	Posterior tibial artery	10 14 4	9 (12.7%)
60%	 Tibioperoneal trunk 		29 (40.8%)
11%	Peroneal artery	4 1 3	15 (21.1%)
23%	Mean lesion length	1 0 2	20.1 mm
	Range		(5-50 mm)
	Mean diameter		3.20 mm
	Mean length		25.5 mm

Varcoe RL, et al. Long-term results of a prospective, single-arm evaluation of everolimus-eluting bioresorbable vascular scaffolds in infrapopliteal arteries. Catheter Cardiovasc Interv. 2020 Oct 10. doi: 10.1002/ccd.29327.

CLI/BTK EVIDENCE DRS Sustained clinical success over median 35 months of FU

60 50 BEFORE AFTER 40 N LIMBS 30 20 10 0 0 1 2 3 4 5 6

CHANGE IN RUTHERFORD CATEGORY

Varcoe et al. 2019.

RUTHERFORD-BECKER CLASS

5 Yr Results with Absorb in BTK Arteries

Primary Patency 72.3%

Freedom from CD-TLR 90.7%

Varcoe RL, et al. Long-term results of a prospective, single-arm evaluation of everolimus-eluting bioresorbable vascular scaffolds in infrapopliteal arteries. Catheter Cardiovasc Interv. 2020 Oct 10. doi: 10.1002/ccd.29327.

Absorb in BTK: International Pooled Analysis

CONSECUTIVE PATIENTS TREATED WITH ABSORB AUGUST 2012–MAY 2017

INCLUSION:

- Rutherford Class 3–6 CLI
- De novo BTK arteries
- Diameter between 2.5 and 4 mm

	NUMBER OF PATIENTS	NUMBER OF LIMBS/LESIONS	NUMBER OF SCAFFOLDS	LENGTH OF FU (TO DATE)
Australia/Varcoe	48	55	71	5у
US/Shah	31	41	49	2у
Singapore/Kum	41	41/53	69	1у

Varcoe et al. Long Term Results and a Glimpse into the Future with Bioresorbable Scaffolds for BTK? LINC 2020.

Absorb in BTK | Pooled Analysis of Three Studies

Majority Were CLI Patients

PATIENT CHARACTERISTICS		LESION CHARACTERISTICS		
Number of patients Gender (male : female)	125 51.2% : 48.8%	Lesions treated	156	
Rutherford Score 2	15.7%	Location of implanted stents: • Popliteal (distal third)	5 51%	
Rutherford Score 4	8.7%	 Anterior tibial artery 	35.43%	
Rutherford Score 5 Rutherford Score 6	55.9% 19.7%	Posterior tibial arteryTibioperoneal trunk	36.22% 33.07%	
ጥለፍሮ ለ	01.0%	Peroneal artery	25.20%	
TASC A TASC B	15.7%	Mean lesion length	25.49 mm	
TASC C TASC D	14.2% 8.7%	Range	(4-88 mm)	
NA	43.3%	Moon diamotor	0.00 mm	
Diabetes	55%	Mean length	25.5 mm	

Varcoe et al. Long Term Results and a Glimpse into the Future with Bioresorbable Scaffolds for BTK? LINC 2020.

Absorb in BTK | Pooled Analysis of Three Studies

Encouraging Primary Patency and TLR Outcomes

Varcoe et al. Long Term Results and a Glimpse into the Future with Bioresorbable Scaffolds for BTK? LINC 2020.

COLUMBIA de NewYork-Presbyterian

Absorb in BTK | Pooled Analysis of Three Studies Absorb in BTK Conclusions

• THREE STUDIES WITH ABSORB IN INFRAPOPLITEAL ARTERIES CONDUCTED IN AUSTRALIA, SINGAPORE AND U.S. SHOWED CONSISTENT RESULTS:

100% technical/procedural success

> 80% patency rates and low rates of reintervention @ 1 year

Excellent clinical success and limb salvage rates @ 1 year

Positive results maintained up to 5 years

Varcoe et al. Long Term Results and a Glimpse into the Future with Bioresorbable Scaffolds for BTK? LINC 2020.

Drug-eluting resorbable scaffolds are being investigated as a potential future treatment option for lower limb disease

Company	Device	Scaffold Material	Drug	Status
Abbott	Esprit [™] BTK	PLLA	Everolimus	Enrolling in LIFE-BTK Trial (N=225)
Biotronik	Magmaris [™]	Magnesium	Sirolimus	Completed 24-month data from a single center retrospective study (N=28)
Meril	MeRes [™]	PLLA	Sirolimus	Enrolling 12-month results from CREDENCE BtK Study (N=30)
Reva	Motiv [™]	Tyrocore [™] (Tyrosine-Derived Polycarbonate)	Sirolimus	CE Mark Enrolling physician-initiated BTK study (N=50)
Efemoral Medical	Efemoral with FlexStep Technology	Unknown	Sirolumus	Enrolling Efemoral I FIH single arm multi-center (n=100) for SFA

This technology provides a scaffold to resist recoil and tack dissections, a drug to inhibit neointimal hyperplasia, and ultimately leave nothing behind (resorbable materials) New therapy segment name: <u>D</u>rug-eluting <u>R</u>esorbable <u>S</u>caffold (DRS)

LIFE-BTK Randomized Multicenter Trial **PIVOTAL INVESTIGATION OF SAFETY AND EFFICACY OF DRS FOR BTK TREATMENT**

Prospective, randomized multicenter, US and OUS single-blind, trial 225 patients randomized 2:1 Esprit[™] BTK vs. PTA

5-YEAR FOLLOW-UP

TRIAL LEADERSHIP

Ramon Varcoe MBBS, MS, FRACS, PhD; Sahil A. Parikh MD, FACC, FSCAI; Brian DeRubertis MD, FACS

COLUMBIA **HewYork-Presbyterian**

Study design

- Prospective, multicenter, single-blind, randomized controlled clinical study
- Approx. 225 patients in up to 50 sites in the US, Australia, New Zealand, Singapore and Taiwan
- Randomized in a 2:1 ratio (Esprit[™] BTK:PTA)
- Subjects will be followed for **5 years**
- Study duration (expected)
 - First enrollment : Q3 2020
 - Enrollment Completion: Q1 2022

Esprit[™] BTK Everolimus Eluting Resorbable Scaffold is a DRS under development for use in BTK disease

Everolimus

- 100 µg/cm² dose density
- Elution rate matched to restenosis cascade
- Cytostatic; broad therapeutic range

PDLLA Resorbable Coating

- Uniform drug delivery
- Provides sustained drug elution to maximize long term patency without downstream particulates

PLLA Resorbable Scaffold*

- 99 μm strut thickness⁺
- Balloon expandable
- Resists recoil; provides a platform for sustained drug delivery
- Resorbs in a benign, controlled manner (~36 months)

 $^{\dagger \leq}$ 3.0 mm size; 3.5 mm – 3.75 mm sizes have 120 μm strut thickness

*Platinum markers at proximal and distal ends remain for angiographic visualization

CAUTION: Investigational device. Limited by Federal law to investigational use only.

Data and images on file at Abbott Vascular

Conclusion

- Although drug-enhanced therapy was successful in ATK, such success has not been realized for BTK disease.
- Ideal tibial treatment involves drug delivery, method of preventing recoil, but leaves future options open by leaving nothing behind
- Feasibility studies using first Gen Absorb everolimus-eluting resorbable scaffold demonstrated excellent long-term patency and freedom from TLR in tibial arteries while preserving future treatment options
- LIFE-BTK IDE study is well underway to assess the safety and efficacy of the Esprit BTK drug-eluting resorbable scaffold compared to PTA.

Bioresorbable scaffolds for BTKreconstructions: Is there a future?

Sahil A. Parikh, MD, FACC, FSCAI

Associate Professor of Medicine Columbia University Vagelos College of Physicians & Surgeons

Director, Endovascular Services Center for Interventional Vascular Therapy NewYork Presbyterian/Columbia University Irving Medical Center